TASK: PA18
CDRL: A023
26 February 1994

Methodology For Verifying Ada
Tasking With Penelope

DTG
@RELLCTERD
Qoo
R j

Informal Technical Data

]
j
L

pr— -

s

SR

i v e ST TR : . :
hio o IRNAEY
This

for public 1= 3
diztribution is uniis

STARS-AC-A023/003/00
26 February 1994

INFORMAL TECHNICAL REPORT

For

TASK: PA1S8
CDRL: A023
26 February 1994

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS

(STARS)

Methodology For Verifying
Ada Tasking With Penelope

STARS-AC-A023/003/00
26 February 1994

Data Type: Informal Technical Data

CONTRACT NO. F19628-93-C-0130

Prepared for:

Electronic Systems Center
Air Force Materiel Command, USAF
Hanscom AFB, MA 01731-2816

Prepared by:

Odyssey Research Associates
under contract to
Unisys Corporation
12010 Sunrise Valley Drive
Reston, VA 22091

Distribution Statement “A”
per DoD Directive 5230.24

SRR N

Accesion for T\]
o
U
0

DTIiC TaAB
Unannouneced
Justification

b

Authorized for public release; Distribution is unlimited.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reparting burden tor this collection of intormation 13 estimated to average 1 hour per response, including the time tor reviewing instructions, searching existilg data sources,
qathering and maintaiming the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, inctuding suggestions for reducing this burden, to Washington Headquarters Services, Directorate for intormation Qoerations and Reports. 1215 Jetterson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), washington, DC 20503,

2. REPORT DATE

1. AGENCY USE ONLY (Leave bilank)
26 Feb 1994

3. REPORT TYPE AND- DATES COVERED
[nformal Technical Report

4. TITLE AND SUBTITLE

Methodology For Verifying Ada
Tasking With Penelope

S. FUNDING NUMBERS

F19628-93-C-0130

6. AUTHOR(S)
ORA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Unisys Corporatiou

12010 Sunrise valley Drive
Reston, VA 22091

8. PERFORMING ORGANIZATION
REPORT NUMBER

. STARS-AC-A203/003/00

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of the Air Force
Headgquarters ESC
Hanscom, AFB, MA 01731-5000

10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

A023

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution "A"

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This paper sketches a method for Penelope to s
tasking.

upport verification of Ada programs that use

14, SUBJECT TERMS

15. NUMBER OF PAGES
49

16. PRICE CODE

18. SECURITY CLASSIFICATION
OFf THIS PAGE

Unclassified

17. SECURITY CLASSIFICATION
OF REPQRT

Unclassified

19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF ABSTRACT
Unclassified SAR

NSN 7540-01-280-5500

Grrmmard form 190 (Fev 1698
R N S S R

TASK: PA18
CDRL: A023
26 February 1994

Data Reference: STARS-AC-A023/003/00
INFORMAL TECHNICAL REPORT

Methodology For Verifying
Ada Tasking With Penelope

Distribution Statement “A”
per DoD Directive 5230.24
Authorized for public release; Distribution is unlimited.

Copyright 1994, Unisys Corporation, Reston, Virginia
and Odyssey Research Associates
Copyright is assigned to the U.S. Government, upon delivery thereto, in accordance with
the DFAR Special Works Clause.

This document, developed under the Software Technology for Adaptable, Reliable Systems
(STARS) program, is approved for release under Distribution “A” of the Scientific and Tech-
nical Information Program Classification Scheme (DoD Directive 5230.24) unless otherwise
indicated. Sponsored by the U.S. Advanced Research Projects Agency (ARPA) under con-
tract F19628-93-C-0130, the STARS program is supported by the military services, SEI,
and MITRE, with the U.S. Air Force as the executive contracting agent. The information
identified herein is subject to change. For further information, contact the authors at the
following mailer address: delivery@stars.reston.paramax.com

Permission to use, copy, modify, and comment on this document for purposes stated un-
der Distribution “A” and without fee is hereby granted, provided that this notice appears
in each whole or partial copy. This document retains Contractor indemnification to The
Government regarding copyrights pursuant to the above referenced STARS contract. The
Government disclaims all responsibility against liability, including costs and expenses for vi-
olation of proprietary rights, or copyrights arising out of the creation or use of this document.

The contents of this document constitutes technical information developed for internal Gov-
ernment use. The Government does not guarantee the accuracy of the contents and does
not sponsor the release to third parties whether engaged in performance of a Government
contract or subcontract or otherwise. The Government further disallows any liability for
damages incurred as the result of the dissemination of this information.

In addition, the Government (prime contractor or its subcontractor) disclaims all warranties
with regard to this document, including all implied warranties of merchantability and fitness,
and in no event shall the Government (prime contractor or its subcontractor) be liable for
any special, indirect or consequential damages or any damages whatsoever resulting from
the loss of use, data, or profits, whether in action of contract, negligence or other tortious.
action, arising in connection with the use of this document.

Data Reference: STARS-AC-A023/003/00
INFORMAL TECHNICAL REPORT

Methodology For Verifying
Ada Tasking With Penelope

Principal Author(s):

TASK: PA18
CDRL: A023
26 February 1994

Douglas N. Hoover Date
Approvals:

Moi L g aby/ay
Program Manager Teh/ F. Payton Date

(Signatures on File)

26 February 1994 STARS-AC-A023/003/00

Contents

1 Introduction and Aims
1.1 Relation to Other Work
1.2 OVEIVIEW . . v v v o o e e e e e e e e e e e e e e e e

2 Concurrent Programming and the Owicki-Gries Method
3 Task and Task Entry Speciﬁ‘cations

4 Task Bodies
4.1 Using Package PBC

5 Separate, Composable Verification of Tasks
6 Declarative Regions as Quasi-Tasks
7 Delay Statements

8 Control Flow of Tasks ,
8.1 The Theory of Tasks and Locations

9 Exceptions and the Abort Statement

10 Shared Variables

11 Freedom from Deadlock

12 Task Formal Parameters

13 Verification without Cooperation Invariants

14 Control vs. Data in Verification of Concurrent Programs

15 Proving General Properties of Quasi-Tasks
15.1 A State Machine Model for Ada Tasking
15.2 Verifying Temporal Assertions'
15.2.1 Simple Safety Properties
15.2.2 Progress Properties
15.3 An Overall Development Method for Concurrent Programs

16 Bibliography
A Semantics of Ada Tasking Primitives
B Concurrent Sieve of Eratosthenes

C Systolic Matrix Multiplication

..........

..........

11
16

17

19

23

23
25

26
27
28

30

30

32

33
34
35
36
36
38

39

40

42

44

26 February 1994 STARS-AC-A023/003/00

1 Introduction and Aims

This paper sketches a method for Penelope to support verification of Ada programs that use
tasking. In developing this method, our aims have been the following.

1. The method must be compatible with Penelope. That is, program annotations should
be written in classical logic, and Penelope should generate verification conditions whose
proof verifies the program.

2. Program annotations should contribute to the understanding of the program by stating. -~

properties that must hold at that point of the computation.

3. The verification process must be compositional—that is, we must be able to verify
parts of a program separately and then put them together to obtain a verification of
the whole without repeating the verification of the parts.

4. The compositionality should be syntax directed—that is, the verification must break
up along the lines of Ada tasks, subprograms, and packages.

5. The method should support separation of concerns in the verification process. For
example, it should be possible to separately verify partial correctness, freedom from
deadlock, and liveness without too much duplication of labor.

6. The method should support both data refinement and program refinement. When-
ever possible, verification of properties expressible at more abstract levels should be
inherited by the implementation.

7. If no tasks or global variables shared by tasks are visible from a given subprogram
or package, then verification in that subprogram or package should be carried on in
the sequential style, even if there are tasks contained inside visible subprograms or
packages.

Properties of concurrent programs can be partitioned in two ways:

e local vs. inter-task properties; and

e safety vs. liveness properties.

Local properties are those that can be regarded as properties of an individual subprogram
or task. Inter-task properties are those that describe the interactions of a group of tasks.
Safety properties state that the program will always be in an acceptable state. Liveness
properties state that some desired action will eventually be performed.

Local safety properties are just partial correctness properties: we must show that each
annotation in a task or subprogram holds whenever it is reached. Local liveness properties

Page 1

26 February 1994 STARS-AC-A023/003/00

are similar to proving termination of a sequential program. For example, one may want to
prove that the execution of an individual task or subprogram will reach completion provided
all the task entry or subprogram calls it makes terminate, or one may wish to show that
execution of certain segments of a task terminate, in case the task as a whole is not meant
ever to reach completion on its own.

The most important inter-task safety property is deadlock freedom. That is, it is never
the case that all active tasks are blocked waiting to communicate with other tasks that
are blocked elsewhere. A typical inter-task liveness property is to show that some chain of
communications between tasks will eventually be completed.

In general, it appears that partial correctness is the most important thing. Local liveness
properties are proved by proving partial correctness with appropriate annotations, and prov-
ing global properties seems to be mainly a matter of organizing local properties in the right
way. '

For proving partial correctness properties, we present a method based on that of Owicki-
Gries [10]. For proving global properties, we outline a state machine method, in which the
states are states of tasks at synchronization points. That a given state machine models a
system of tasks is to be derived by partial correctness methods. We do not treat liveness
properties (total correctness) in detail here, but we discuss it briefly in Section 15.

Our method for specifying and verifying partial correctness is based on the Owicki-Gries
method [10], a natural extension of Hoare logic to concurrent programs. Since Penelope is
based on predicate transformation, which is essentially a partially automated Hoare logic,
Penelope’s extension to Ada tasking is naturally based on an adaptation of the Owicki-Gries
method.

Besides adapting Owicki-Gries to the predicate transformation format, we have adapted
it in two other ways. In the original Owicki-Gries paper, processes communicate only via
shared variables. We have adapted the method to support typical Ada communication via
rendezvous (task entry calls—the Owicki-Gries method was also adapted for this purpose
in [3]). The Ada method of communication is much cleaner and has the attractive feature
that the semantics of task entry calls resemble those of subprogram calls.

The second way in which we have modified the Owicki-Gries method is to support compos-
able, reusable verification. The problem with Owicki-Gries is that

e verification of each task involves a global cooperation invariant (called a global invariant

by Owicki and Gries);

e what the cooperation invariant will be depends on the whole ensemble of tasks and
their global pre- and post-conditions;

e therefore no task can be verified without knowledge of the whole ensemble of tasks
with which it is to be used.

Page 2

26 February 1994 ' STARS-AC-A023/003/00

We get around this problem by observing that the verification of each task does not depend
very strongly on the cooperation invariant (CI). Rather, it requires only that the cooperation
invariant satisfy certain properties. We express these properties as a constraint on the CI.
The CI constraint for a collection of tasks is just the conjunction of the constraints on the
individual tasks. The cooperation invariant itself need not be known to the individual tasks,
only to their parent.

In order to eliminate certain problems in dealing with cooperation invariants, to permit more
intuitive specification of entry calls, and to facilitate program refinement, we have made free
use of virtual variables. By using virtual variables where necessary, task entry semantics can
be made very similar to subprogram semantics.

Our use of virtual variables has been inspired by Lamport’s work on refinement [8]. Lamport
emphasizes that the abstraction relation between the abstract state and the implementation
state need not hold at all times. Our virtual variables stand for elements of an abstract state
that need coincide with the desired abstraction of the implementation state only when the
specifier says that they must.

1.1 Relation to Other Work

Cooperation invariant constraints and use of virtual variables to make entry call semantics
analogous to subprogram call semantics are the main innovations of our approach. We feel
that they constitute a significant improvement on previous attempts to give Ada tasking
semantics [3, 2]. |

Owicki and Gries [10] are concerned with communication via shared variables. In that
context, the cooperation invariant will be a relation that must (almost) always hold among
the shared variables. But assignments to shared variables can occur only one at a time.
Thus, if a group of assignments is to be made to several global variables, the cooperation
invariant will probably not hold between the first assignment and the last. In order to handle
this problem, Owicki and Gries adopt a method of bracketing critical regions in which the
cooperation invariant need not hold, so that groups of assignments to shared variables can be
made. Only one task may be in a critical region at a given time. The cooperation invariant
must be preserved by each critical region treated as an atomic unit.

In Ada, process communication is normally by entry call rather than by shared variables, and
the cooperation invariant normally relates non-shared variables that constitute the states of
the various tasks. The problem is that the natural cooperation invariant tends to be violated
when communications occur.

For example consider two tasks T'1 and T2 that manage two buffers Bl and B2. Suppose
that the object is to pass the contents of Bl to B2 a character at a time. The cooperation
invariant will be

B1 ++ B2 = IN B1 ++ IN B2

26 February 1994 STARS-AC-A023/003/00

that is, the current contents of Bl and B2 are the same as their original contents. A
communication will consist of T'1 sending T2 the last character ¢ in B1, which T2 will add
to the front of B2.

Now T'1 will probably remove ¢ from B1 before the communication commences, and 72 will
add it to B2 only after the communcation completes, so that the cooperation invariant is
violated at the time of the communication. Gerth and de Roever (3] solve this problem by a
bracketing method similar to the critical regions of Owicki and Gries. Each communication
is to be bracketed in both of the tasks involved, and the CI is not required to hold in
the bracketed region. (Dillon [2] extends this method slightly to reduce the use of virtual
variables.)

Unfortunately this approach is rather messy. Proving the correctness of each communication
requires knowing code from the bracketed regions in both the communicating tasks, making
it impossible to verify tasks in isolation, and making the whole method non-compositional.
Even worse, the possibility of nested accept statements and entry calls inside accept bodies
in Ada means that a more complicated split bracketing sometimes has to be used.

We have solved this problem by using virtual variables. In the example, virtual variables
B1’ and B2 are used in the cooperation invariant. The communication is considered to
instantaneously transfer a character from B1’ to B2/, thereby preserving the cooperation
invariant. As part of the verification we will have to show that B1' = Bl and B2’ = B2
at suitable times, but that can be done in isolation for each task. With our approach, the
semantics of a task entry call is similar to the semantics of a subprogram call, except that
we must show that the cooperation invariant is preserved.

Jones [6, 7] suggested another method for giving a compositional extension of Hoare to
concurrent programs. We have preferred the Owicki-Gries method on the grounds that it is
more comprehensible. It is not always obvious what the annotations should be in Jones’s
method.

Jones required that each task be annotated with the following conditions:

e an invariant that the task assumes other tasks preserve, but that the task need not
preserve;

e an invariant that the task would guarantee if it were running in isolation, but that
other tasks need not preserve;

a precondition;

a postcondition.

Jones gave a verification rule due to P. Aczel for parallel composition of tasks with these
annotations, yielding verification conditions relating the annotations of the composed tasks
to their composition.

Page 4

26 February 1994 STARS-AC-A023/003/00

We feel that Jones’s method is rather confusing for the following reasons. First, the condition
that a task guarantees is not only a condition that it would preserve if it were running
in isolation; other tasks may violate it. This fact makes it hard to figure out what the
guarantee should be, since it is not something that will actually be an invariant in the whole
system. Furthermore, what would intuitively be the postcondition—what we want the task
to establish—has to be teased apart in a rather delicate way, making part of it into the
Jones postcondition and part into the Jones guarantee. It was not obvious how to do this for
the buffer example, even though it is closely related to the distributed sieve of Eratosthenes
example that Jones works in [6] (and we work in Appendix B). Since, with a given purpose
one has in mind, it is usually quite obvious what the Owicki-Gries cooperation invariant
should be, and one can derive from the verification process itself what constraints a given
task imposes on the cooperation condition, it seems easier to use the Owicki-Gries method.

1.2 Overview

The proof of total correctness of a tasking program can be divided into three parts, two of
which are essentially the same as the two parts (partial correctness and termination) of the
proof of total correctness of a sequential program:

e partial correctness, the proof that each embedded assertion is true whenever it is
reached;

o freedom from deadlock, the proof that computation does not hang up because some
process is waiting for a rendezvous that is never kept;

e progress (termination, freedom from livelock), the proof that computation does not
just spin its wheels, but produces desired results.

We feel that in constructing a verification system for tasking programs, these three aspects
should be addressed in this order. One reason for taking this point of view is that a proof
of partial correctness is the most interesting semantically. The other reason is that deadlock
freedom and progress conditions are proved by embedding particular annotations in the
program and giving a partial correctness proof that they are true whenever they are reached.
Consequently, we concentrate most on partial correctness in this report, though we also cover
the other aspects of verification.

We will begin our discussion of semantics by sketching the essential idea of the Owicki-Gries
method in Section 2. In Sections 3 and 4, we will develop its application to Ada tasking
semantics using the eternal producer-consumer (buffer) example. In Section 5 we develop
the method of cooperation invariant constraints as a way to make the Owicki-Gries method
compositional. In Section 7 we discuss the semantics of the delay statement. In Section 8
we introduce a language for specifying control flow of concurrent programs. This control
flow language is exploited in Sections 9, 10 and 11 where we discuss exceptions, the abort
statement, shared variables, and proofs of deadlock freedom. In Section 12 we discuss the

Page 5

26 February 1994 STARS-AC-A023/003/00

semantics of tasks as formal parameters to subprograms. In Sections 13 and 14 we discuss
an alternate style of verification and the distinction between analysis of control flow and of
data transformation in concurrent programs. In Section 15 we introduce a way of modeling
Ada tasking programs as state machines and discuss how to use Penelope to prove general
temporal properties of concurrent programs. In Appendix A we summarize the semantics of
Ada tasking primitives. In Appendices B and C we give more interesting examples of tasking
programs, a distributed sieve of Eratosthenes and a systolic matrix multiplication algorithm.
An example similar to the latter was worked in [12, 13]. The reader should compare the two
approaches.

In this report we give semantics in Dijkstra’s weakest precondition notation. Compared
to the semantics in the Penelope predicate transformer document [11], this semantics is
simplified by ignoring the environment, exceptions, and the possibility of side effects on
expression evaluation, and thereby gains in understandability. Generalizing these semantics
to a proper predicate transformer semantics is laborious but straightforward.

2 Concurrent Programming and the Owicki-Gries Method

Concurrent programming means that a family of program tasks is running “at the same
time.” “At the same time” might mean that their statements are really executed simulta-
neously on a collection of processors, or that they are executed in an interleaved fashion by
time-sharing. Just how it is done does not affect the result as long as two tasks are not trying
to access the same shared variable in statements whose order of execution is not determined.
For most of this report, we will assume that there are no truly shared variables. We will
allow tasks to use global variables, as long as there is only one active task at any one time
that uses a given global variable. In Section 10 we will consider the complications introduced
by shared variables.

We can write the composite of n tasks T4,...,T, running concurrently as
Tl .- |l Tn,

(N.B.: This notation is only in this section for explanation. It will not be used in Penelope
verification.)

Suppose that for some properties P and @ we want to show

{P}(T1 | .- I Tn) {@}- 1)

(This Hoare triple notation says that the precondition P ensures that the postcondition @
holds after executing Ty || ... || Tn.) If there are no communications between the different
tasks, then the proof of this assertion reduces to finding conditions F; and Q;,1=1,...,n,
such that for each z,

{P}T:{Q:},
as well as

FP— AP

Page 6

26 February 1994 STARS-AC-A023/003/00

and

*‘/_\Qi—*Q-

Normally, however, the different tasks will communicate, providing both a responsibility and
an opportunity to show that

1. the interference betweén tasks does not spoil the verifications; and that

2. the cooperation between tasks leads to an accomplishment greater than they would
have achieved separately.

This combination of responsibility and opportunity is met by introducing the cooperation
invariant (CI). To prove (1) it suffices to show the following.

1. CI is preserved by all communications and internal computations of each task (i.e. it
really is an invariant).

9. F P = CIAA, P.
3. FCIANQ: — Q.

How we prove that CI is really an invariant will emerge as we work out a verification example
in the following sections. We want to note here, though, that the use of a cooperation invari-
ant poses a problem for composability of verifications. The reason is that, on the one hand,
the choice of cooperation invariant depends on the whole ensemble of tasks that are cooper-
ating, while, on the other hand, the verification of an individual task is not complete without
the proof that the cooperation invariant is preserved by that task and its communications. In
Section 5 we solve this problem by giving an isolated task a generic invariant together with a
set of constraints that must be satisfied when the generic invariant is eventually instantiated
by a concrete invariant.

3 Task and Task Entry Specifications

The tasks of an Ada program at a given moment consist of the main thread of control
(the “sequential part”) and whatever Ada tasks are currently active. The Ada program
is the parallel composition of all these tasks. Although Ada tasks are pieces of program,
Ada considers them data objects (though with no assignment or equality test) in order to
accommodate arrays and lists of tasks and dynamic creation of tasks.

Communication between tasks is normally implemented using entry calls, as declared in the
following declaration of a buffer task.

Page 7

26 February 1994 | STARS-AC-A023/003/00

task BUFFER is

entry write(c: character --: virtual stream.in: in out Stream
)
entry read(c: OUT character --: virtual streamout: in out Stream;
)
end BUFFER;

The annotation
--: virtual

indicates that what follows are virtual parameters to the entry call. Semantically, they are
like concrete parameters, but they have a sort rather than a type.

From the point of view of the caller, task entries look like procedure calls. Ada encourages
this point of view by permitting entry calls to be renamed as if they were subprograms.
There are, however, differences between a subprogram and a task entry.

1. A task can continue computing when none of its entries are being called.
2. A task can have several entries of the same name.

3. A task entry can be called only when the control point of the task is at the beginning
of the entry. (Hence a task cannot call any of its own entries.)

4. Only one task at a time can rendezvous with a given task entry.

The first two items are internal considerations for the task containing the entry. The only
external effect of the latter two items is the possibility of deadlock. From the point of view
of partial correctness, therefore, it is reasonable to treat a task entry externally as if it were
a procedure.

We illustrate this with the following example of a system consisting of three tasks, PRO-
DUCER, BUFFER, and CONSUMER.

1. The task PRODUCER sends characters from an array A to a queue.

2. The task BUFFER manages this queue.

3. The task CONSUMER takes characters from the queue and puts them in the array B.
4. When all the characters have been moved, the program returns.

This program simply copies an array and is used for illustration. We start with the package
specification.

Page 8

26 February 1994 STARS-AC-A023/003/00

package PBC is
'--| globals: A : in, B: out;
--| PRE: A’length = B’length and A’length > 0;
--] POST B = in A;

end PBC;

The globals annotation must list all global variables that may be read or written by tasks
inside the package. Consider an annotation:

--| globals V : in;

This annotation means that the global V may be read (but not written) by tasks inside the
package. This annotation invokes machinery to enforce the mutual exclusion conditions that
the Ada Reference manual (RM) Section 9.11 imposes on use of global variables by tasks,
but as long as each global variable is declared as a global by only one task, we do not have
to worry about this machinery.

The PRE and POST annotations indicate the conditions that PBC assumes at the beginning
of its activation (RM 9.3) and that it guarantees will hold when it and its dependents are
terminated or ready to terminate (RM 9.4). We will see how they are used in the next
section. ‘

Note that the declaration of PBC does not contain any task or subprogram declarations. That
is because when the body of PBC is elaborated, its tasks will be set going automatically and
will do their work without any outside prompting. If task entries inside PBC were externally
visible, that would not materially complicate proof of partial correctness.

package body PBC is

task PRODUCER;
--| STATE to_Q : Stream := [];
--] PRE: true;
-~-| POST: to_Q = A;

task BUFFER
--| STATE Q : Stream := [];

--| PRE: true;

--1 POST: Q = [1;

is

entry WRITE(c: character --: virtual stream_in: in out Stream

)
--1 0UT Q = [c] ++ (IN Q);
--| OUT stream_in = ¢ ++ (IN stream_in);

Page 9

26 February 1994 STARS-AC-A023/003/00

entry READ(c: OUT character --: virtual stream_out: in out Stream
)
--1 PRE Q /= [1;
--1 OUT (IN Q) = Q ++ [c] ;

--| OUT stream_out = [c] ++ (IN stream_out);
end BUFFER;

task CONSUMER;
--| STATE to_Q : Stream := [];
--| OUT from_Q = B;

--| CI: PRODUCER.to_Q = BUFFER.Q ++ CONSUMER.from_Q;

end PBC;

Stream is the sort of lists of characters. The STATE of a task (or, more generally, of any
declarative region) is a list of virtual and actual variables. The actual variables are to be
declared later in the body of the task. The state declaration will suffice as a declaration of
the virtual variables. Initial values may be supplied for the variables in the state. Actual
variables in the state must get the same initialization when they are eventually declared as
actual variables. The CI clause declares the cooperation invariant.

State variables are a restricted form of global variables. They may appear in the CI, but
not in any other code or annotations outside the task that declares them. (They will occur
outside the task that declares them in verification conditions (VCs) connected with the CL.)
The purpose of the state is to make private variables of the task available to the CI. Global
variables may not be included in the state.

Note that the task entries can have virtual formal parameters. The corresponding actual
parameters will normally be state variables of the task that calls the entry.

A task entry may have IN, OUT, and PRE conditions. Proof obligations are distributed as
follows.

e The verification of the calling task must prove that the CI and the IN condition hold
whenever the entry is called.

o The verification of the accepting task must prove that the CI and the PRE condition
hold whenever the accept statement is reached.

e Verification of the accept body must show that the OUT condition holds whenever the
accept statement returns.

o The calling task must show that the CI and the postcondition of the task both hold
when the entry call returns. In doing so, it may use the facts that the PRE condition
and the CI held before the entry call.

Page 10

26 February 1994 STARS-AC-A023/003/00

e The postcondition of the accept statement can just be transformed through the accept
statement.

Except for the verification of the individual tasks and the proof that they preserve the CI,
we can now derive and prove all the VCs related to this ensemble of tasks. The VCs are as
follows, written in sequent form.

e PRE condition of PBC implies the CI with the initial values of the state variables of its
components. In sequent form,

1. A’length = B’length
2. A’length > 0 (i.e. (A’length = B’length and A’length > 0)
> [0 =101+]

=> [0 =10 + [1.)

e For each component, the PRE condition of PBC, the CI, and the initial condition of that
task imply the PRE condition of the component. The preconditions of PRODUCER,
BUFFER and CONSUMER are all true, so there is nothing to prove.

e The POST conditions of the components plus the CI imply the POST condition of PBC.

1. PRODUCER.toQ = IN A

2. BUFFER.Q = []

3. CONSUMER.fromQ = B

4. PRODUCER.to_} = BUFFER.Q ++ CONSUMER.fromQ
>> = A

4 Task Bodies

In this section, we look at verification of individual tasks. The main points to be covered are

e semantics of entry calls and accept statements and
e preservation of the cooperation invariant.

Let us look at the body of the PRODUCER task first. It will be easy because it does not contain
any accept statements. The CONSUMER task would be similar, so we will omit it. ‘

task body PRODUCER is
I. INTEGER := 1;
begin

Page 11

26 February 1994 STARS-AC-A023/003/00

while I <= A’length loop
--| invariant to_Q = A[1..I-1];
buffer.write(A(I) --: virtual to_Q;

);

I =1+ 1;

end loop;

--| to_Q = A[0..A’length];

end PRODUCER;

Aside from the VC connected with the loop, we have the initial VC that the initial value
assignment plus the PRE condition imply the precondition of the task body. This is all
routine. The only thing to look at is preservation of the cooperation invariant and the
precise form of the predicate transformer for the call to buffer.write.

The cooperation invariant is required to hold when each synchronization point is reached.
Thus, for each entry call/accept rendezvous, the cooperation invariant must be a conjunct
of each of the following, in addition to the annotations at those points:

e the precondition of the accept statement (in the accepting task);
e the precondition of the entry call (in the calling task); and

e the postcondition of the entry call (in the calling task).

For example, the precondition of the write entry call is as follows.

(toQ = Q) ++ fromQ and (cons(c,to) = cons(c,Q) ++ fromQ)
and theta

where theta is the postcondition of the entry call.

The proof that the CI holds after the entry call need only be done once for both the calling
and the accepting tasks, because just one piece of code, the entry call, has just been executed
for both. The proof is done in the calling process because only it knows whether any of the
arguments to the entry call were state variables, and which state variables they were.

To show that the CI holds at the beginning of the rendezvous, it suffices for the following
reasons to show that the caller and the acceptor have each individually preserved the CI.

e According to RM 9.11, it is not permitted for both tasks to change the same global
variables since their previous synchronization points (and this ban will be enforced by
our global annotations). ‘

26 February 1994 STARS-AC-A023/003/00

e Hence, however their code is executed, it is the same as if one task had run first then
the other.

e Therefore, it suffices to show that each task separately has preserved the CI since its
previous synchronization point.

There may appear to be a problem if an accept statement for an entry that has some IN OUT
or OUT parameters itself contains an entry call or another accept statement: if the semantics
of IN OUT is call by reference and the corresponding actual parameter is a state variable,
then assignment to that parameter between the beginning of the original accept statement
and a nested entry call or accept may violate the CI. This is not a real problem, however,
because Ada requires and Penelope’s aliasing checks guarantee that the behavior of a call be
the same whether the semantics is call by reference or call by copy. Hence we can treat IN
OUT parameter semantics as call by copy. The value of a state variable that is an IN OUT or
OUT variable is not changed until the entry call returns; hence the CI cannot be inadvertently
violated in a way that is not detectable inside the accept statement.

Note that although to_Q is meant to be an abstraction of A[1..I-1], the abstraction relation
need not hold all the time. In fact, the annotations require only that it hold at the top of
the loop and at the end of the program. In fact, there need be no formal requirement that
any particular abstraction relation ever hold. If the virtual state variables bore no relation
to actual variables, then we just could not prove anything about the data transmitted by
rendezvous. This looseness is very useful because it permits a clean abstraction without
imposing any constraints on the implementation.

(To give fuller argument: Obviously the verifications would be correct if the virtual variables
were made actual. But the effect of the program on its original actual variables is the same
whether the virtual variables are actual or not. Our use of virtual variables is the same as
Owicki’s method of auxiliary variables [10].)

The body of the CONSUMER task will be as follows. The same concerns apply to the CONSUMER
task as to PRODUCER, so we will make no further comment.

task body CONSUMER;
J: INTEGER := 1;

begin
while J <= B’length loop
--| invariant from_Q = B[1..J-1];
buffer.read(A(J) --: virtual from_Q
);
J =7+ 1;
end loop;
--| from_Q = B[1..M];
end CONSUMER;

Page 13

26 February 1994 STARS-AC-A023/003/00

Now we go on to the buffer itself.

task body BUFFER is

POOL_SIZE : constant INTEGER := 7; -- any comstant > 0;

POOL : array(l .. POOL_SIZE) of CHARACTER;

COUNT : INTEGER range 0 .. POOL_SIZE := 0;

IN_INDEX, OUT_INDEX : INTEGER range 1 .. POOL_SIZE := 1;
begin

loop

--| invariant queue_rep(Q,POOL,COUNT,IN_INDEX,OUT_INDEX);
select
when COUNT < POOL_SIZE =>
accept WRITE(C : in CHARACTER
--: virtual stream_in: in out Stream
)
do
POOL(IN_INDEX) := C;
-1 0 := Q ++ [l
--: stream_in := stream_in ++ [c];
end;
IN_INDEX :
COUNT

IN_INDEX mod POOL_SIZE + 1;
COUNT + 1;

or
when COUNT > 0 =>
accept READ(C : out CHARACTER
--| virtual stream_in: in out Stream

)
do
C := POOL(OUT_INDEX);
--: Q= £1(Q);
--: stream_out := stream_out ++ [C];
end;
OUT_INDEX := OUT_INDEX mod POOL_SIZE + 1;
COUNT = COUNT - 1;
or
terminate;
end select;
end loop;
end BUFFER;

Besides the accepf statement, the BUFFER task introduces three other interesting constructs,
the select, the when and the terminate.

Page 14

26 February 1994 STARS-AC-A023/003/00

e select Rl or ...or Rn means that the program may execute any of the R1, ...,
Rn, each of which is either

— an accept statement or

— an accept guarded by a when, whose guard has the value true.

Each Ri in the select statement must be of this form. (For else alternatives see

Appendix A.)

Of course, an accept statement will not be executed unless another task calls it. If
a task calls an entry that its owner is not waiting to accept, then the calling task is
blocked and the call is put in a queue. These possibilities relate to the possibility of
deadlock, discussed in Section 11. They do not affect partial correctness.

The predicate transformation for a select statement is:

wp(select R1 or ...or Rn;)¢ = wp(R1)# A ... A wp(Rn)¢ (2)
o A when statement is of the form
when b => A;
~ where b is a boolean expression and A is an accept statement. It means that this
alternative may be taken only if b holds. The predicate transformer is
wp(when b => A;)¢ =b — wp(A)4,
assuming that evaluation of b has no side effects.

e The terminate alternative means that the task is willing to terminate if the task or
subprogram that started it (its master) and all other tasks started by that master
have terminated or are similarly ready to terminate. The precondition of a terminate
statement 1s

CI A (/\ POST; — POST>

where POST is the POST condition of the task and POST; are the POST conditions of
its children.

Now let us look at semantics of accept statements. Consider the declaration and the accept
statement for READ.

entry READ(c: OUT character --: virtual stream_out: in out Stream
)
--1 PRE Q /= [];

--| OUT (IN Q) = cons(Q,c) ;
--| OUT stream_out = cons(c, (IN stream_out));

Page 15

26 February 1994 STARS-AC-A023/003/00

when COUNT > 0 =>
accept READ(c : OUT character
~-: virtual stream_out: in out Stream
)
do
C := POOL(OUT_INDEX);
--: queue := tl(queue);

--: stream_out := stream_out ++ [C];
end;
QUT_INDEX := QUT_INDEX mod POOL_SIZE + 1;
COUNT = COUNT - 1;

The first thing to note is that not all the computation associated with the entry call is
contained inside the entry call itself. Intuitively, WRITE takes a character off the queue and
returns it. The implementation of the queue is the segment of POOL from OUT_INDEX back
to IN_INDEX. The character is not actually taken off the implemented queue until OUT_INDEX
is incremented, which is after the end of the accept statement. Before then, it might have
been put into B. If Q were just the implemented queue and from_Q were just B[0..J], then
this would lead to a violation of the cooperation invariant. It is for this reason that we have
introduced the virtual variables Q and from_q.

Dillon [2] gives as a reason for avoiding virtual variables the fact that using them sometimes
requires that an accept statement be given a body when it otherwise would not have one.
(For example, it might have no arguments, the mere fact of it being called being sufficient
to transmit needed information.) We should invent some convention to avoid creating such
unnecessary bodies for accept statements. Either a convention like that above or some sort
of virtual body should be used.

The predicate transformation associated with an accept statement is given by:

wp(accept xxx(...) do S end;)¢=CIAV...(CIAO; — wp(S)(0, A $)) (3)

where 0; and 6, are the in and out conditions from the entry declaration and the ellipsis
points represent the formal paramenters of the entry.

4.1 Using Package PBC

Package PBC acts like a big task with no task entries and the given PRE and POST conditions.
It still has to be treated like a task because it does have globals. We might use PBC inside a
procedure like the following one, that occupies its time doing something else while waiting
for PBC to do its work.

26 February 1994 STARS-AC-A023/003/00

procedure copy_and_power(A: in string, B: out string, n: in integer,
two_to_n: out integer)
--] IN A’length > 0 and A’length = B’length and n >= 0;
--| OUT B = IN A and two_to_n = 2%*n;
is
p : integer := 1;
package PBC is

end PBC;
package body PBC is separate;

is
begin
for i in 1..n loop
P = p*2;
end loop
two_to_2 := p;
return;

end copy_and_power;

Conceptually, this subprogram consists of two tasks, its own body and PBC. No cooperation
invariant is necessary because neither has any task entries. No global variables of PBC
are Imods or rmods of the part of copy_and_power that comes after the body of PBC, so
copy-and_power needs no globals annotation.

The precondition of the final return statement is that the POST condition of PBC implies the
OUT condition of copy-and_power.

(B =in A) -> (B = in A) and (two_to_n = 2%*n)

If there had been more tasks or a cooperation invariant, this precondition would be that
the conjunction of the cooperation invariant and the postconditions of all the proper tasks
implies the out condition of the subprogram.

The initial VC of copy_and_power is that the IN condition must imply the conjunction of
the precondition of the body and the PRE condition of PBC. The globals condition of PBC is
discharged automatically because A and B are not mods of the body of copy.and_power.

From the outside, copy.and_power looks like an ordinary subprogram and nobody else needs
to know that it contains any tasking.

5 Separate, Composable Verification of Tasks

Consider the cooperation invariant in the producer-buffer-consumer example.

Page 17

26 February 1994 STARS-AC-A023/003/00

--| CI: PRODUCER.to_Q = BUFFER.Q ++ CONSUMER.from_Q;

Suppose that instead of one producer and one consumer there are several of each. For
concreteness, say that there are two producers, PRODUCER1 and PRODUCER2, and two con-
sumers, CONSUMER1 and CONSUMER2. Then we would need a different cooperation invari-
ant. For clarity, we might introduce two new state variables in BUFFER, input_stream and
output_stream. Modify the entry declarations to read as follows.

entry write(c: char);
--: virtual producer_stream: in out Stream;
--| OUT input_stream = cons(c, (IN input_stream));
--| OUT producer_stream = cons(c, (IN producer_stream));

entry read(c: OUT char);
--: virtual consumer_stream: in out Stream;

--| OUT output_stream = cons(c, (IN output_stream));
--| OUT consumer_stream = cons(c, (IN consumer_stream));

Then we can write the cooperation invariant as follows.

--| CI: shuffle(CONSUMER1.to_,CONSUMER2.toQ,BUFFER.input_stream)
--| and
- shuffle (PRODUCER1.from_Q,PRODUCER2.from Q,BUFFER. output_stream)

The equation
input_stream = Q ++ output_stream

can be made part of BUFFER’s POST condition and loop invariant @ can be left out of the
state of BUFFER.

The shuffle predicate is defined as its name implies: /3 is obtained by interleaving [, and ls.

shuffle({], [}, []) = true

shuffle(a : i, ly,a: 1l3) = shuffle(ly, g, I3) (4)
shuffle(ly, a : lo,a : I3) = shuffle(ly, Iz, 1)

shuffle(ly, lo,I3) = false (otherwise)

If we again change the number of producers and consumers, we will again have to change
the cooperation invariant. This is a problem, because the verifications of each producer and
consumer depends on the cooperation invariant, since it appears as an implicit pre- and post-

Page 18

26 February 1994 STARS-AC-A023/003/00

condition in each entry call. We solve this problem by noting that the verification of each
individual task depends only on the cooperation invariant being preserved by entry calls.
For example, the verification of CONSUMER1 will go through with any cooperation invariant
CI that satisfies the following formula.

forall c: Char:: CI ->
CI[CONSUMER1.to_Q <= c:CONSUMER1.to_Q,
BUFFER.input_stream <= c:BUFFER.input_stream]

Since the variables of CI are not specified, we use the notation for array updates to indicate
substitution. Now we have a generic verification of a producer task that we can file away
and reuse in a producer-consumer system with any number of producers and consumers.

A minimal CI constraint must state the following:

1. the CI is preserved by entry calls;

2. the CI is preserved by execution of code between synchronization points.
Each constraint of this kind can always be expressed in the form
forall x1,...,xn :: CI -> CI[x1,...,xn <= f(x1,...,xn)]
or

forall x1,...,xn,y1,...,yn :: R(x1,...,xn,yl,...,yn) and
CI -> CI[x1,...,xn <= y1,...,yn]

Here R is just the relation between the state at one synchronization point and the next.

6 Declarative Regions as Quasi-Tasks

In the previous sections we have seen that a package that contains tasks may have to be
treated as a big task because it contains code that can be executing concurrently with code
outside it. The same is true of any declarative region that can have a declarative part. In this
section, we summarize what annotations such a declarative region will need in its capacity
as a quasi-task and what VCs have to be generated to relate these annotations to the task
annotations of its components.

26 February 1994 STARS-AC-A023/003/00

By a quasi-task, we mean a declarative region of a program whose denotation will be a state
machine. Its state consists of the locations of instruction pointers of all tasks it contains
and the values of their state variables. We will go into more detail about exactly what a
quasi-task is in Section 15.1. Here, we are interested only in aspects relevant to partial
correctness, namely state variables and cooperation invariants.

A quasi-task is what might intuitively be called a process. We use the name quasi-task
because it differs technically from the use of the term process in process algebra, as in [5, 9,
12], a process there being a state machine in a particular state, considered from the point of
view of how it can be transformed into other processes by participating in communications.

Declarative regions are important in the context of tasking because they may combine com-
ponent tasks, hide certain task communications, and leave other task communications visible.
Accordingly, declarative regions will need two sets of task annotations: external annotations
governing externally visible communications and variables; and internal annotations that add
supplementary information about the internally visible communications and state variables.

Let us be precise: A quasi-task is a

e package,
e subprogram,
e task or

e block.
It will be important to think of a region as a quasi-task if it contains

e task entries visible outside it,
e calls to task entries outside it, or

e uses globals, global variables that are visible outside it and are Imods or rmods of some
task inside it.

If it does not do any of these things, it is still a quasi-task, but a trivial one; it does not need
any of the annotations peculiar to quasi-tasks and it can just use defaults.

The components of a quasi-task are its own body and the quasi-tasks declared in its declar-
ative part including all tasks in the collection associated with any access types for a type
that has task components. Semantically, a quasi-task is the parallel composition of its com-

ponents.

The externally visible annotations of a quasi-task are as follows. Syntactically, these anno-
tations will all be basic declarative items.

Page 20

26 February 1994 STARS-AC-A023/003/00

e State specification with initial values.

--| STATE:
-=| x: Sortl := a; y: Sort2; ...--| end STATE;

For packages, the state does not include the state of components visible in the package
declaration, since those states will be visible outside the package. The package state
should summarize the state of hidden components for use in the cooperation invariants
of containing quasi-tasks.

State variables do not have to be given an initial value. A state variable that does not
have an initial value is considered to have a well-defined but unknown value.

If there is no state declaration, there are considered to be no state variables.

¢ Entry and exit conditions. For packages and tasks, these are PRE and POST conditions.
For subprograms, they are the IN and OUT conditions. Block statements do not have
them.

e Global annotations, which are of the form
--| GLOBALS A: in, B: out, C: in out;

where A, B and C are variables global to the quasi-task. For packages, these declarations
need cover only globals of hidden components, not the visible ones.

o Declarations, including declarations of all component quasi-tasks.

e Cooperation invariant constraint:
--| CI CONSTRAINT: P;

Here, P is a generalized formula as described in Section 5. That is, it is like a formula
except that it can contain terms

CI[x1 <= t1]...[xn <= tn]

where x1, ..., xn are Larch or Larch/Ada variables and t1, ..., tn are terms. Unlike
other annotations, for a package, the CI constraint must subsume the CI constraints
of all components.

Normally, any state variables that are not mentioned in the CI constraint are super-
fluous and should be eliminated.

If the CI constraint is absent, the quasi-task simply inherits the CI constraint and the
local CI of the quasi-task that contains it.

The annotations should normally occur in this order. The CI constraint comes last because
it probably needs to mention state variables of the component quasi-tasks. For packages, all
the foregoing annotations must appear in the package declaration.

Page 21

96 February 1994 STARS-AC-A023/003/00

In addition, each quasi-task may have the following annotations.

e Declarations of all internal components.

o Local cooperation invariant. It may mention only state variables that cannot be
changed by any call to an external entry or by a call to any externally visible en-
try of this quasi-task.

The cooperation invariant T.CI of a quasi-task T will be the conjunction of its local and

global cooperation invariants (the latter will just be denoted CI if T has a CI constraint
instead of inheriting an explicit global CI).

If the quasi-task is a package, these annotations should occur in the package body.

These are the main annotations relevant to partial correctness. In addition to these anno-
tations, a quasi-task may have exception annotations (as for sequential programs), abort
annotations, deadlock annotations, and progress annotations. These other kinds of annota-
tions will be discussed in later sections.

The annotations of a quasi-task T generate the following proof obligations.

1. For each component quasi-task T’ of T, if T’ has a CI constraint, then we must prove
the following VC showing that the CI constraint and local cooperation invariant of T
are compatible with the CI constraint of T’.

1. T.CI_CONSTRAINT
>> T’ .CI_CONSTRAINT[CI <= T.CI]

For the purpose of this proof, the variables of CI can be taken to be just the variables
visible in T.

2. If T is a non-library package, then the following VC is associated with the POST condi-
tion of T.

T1.POST and ...Tn.POST -> T.POST

Here, T1,..., Tn are the components of T. (This VC is in addition to the postcondition
of a package defined in the sequential predicate transformers. T.POST is the condition
that must hold when the tasks in T terminate. The postcondition of the package is the
condition that must hold on completion of the execution of the sequence of statements
in the package.)

If the quasi-task T is anything but a non-library package, the post condition of the
body of T is

T.CI and (T1.POST and ...Tn.POST -> theta)

where T1, ..., Tn are the components of T and theta is

Page 22

26 February 1994 STARS-AC-A023/003/00

e T.POSTif T is a task or a library package;
e the OUT condition of T if T is a subprogram; or
e the postcondition of T if T is a block.

The reason for distinguishing non-library packages is that only in them is the termi-
nation of packages not synchronized with the end statement of the quasi-task.

3. If T’ is a component of T that is a task, then T.CI and T’.PRE is the precondition of
the activation of T. In particular, the following things hold.

(a) T’ .PRE must imply the local CI of T°.
(b) The precondition of the begin following the declarative part of T is

theta and T.CI and T1.PRE and ...and Tn.PRE

where theta is the precondition of the sequence of statements of T (with, for each
i, Ti.location set to Ti.init—see Section 8). Ti,..., Tn are the declared (as
opposed to allocated) components of T.

(c) The precondition of a new that allocates a task will imply the CI of the task doing
the allocating and the PRE of the task being allocated.

4. Global annotations work as they currently do in Penelope. That is, a task, package, or
subprogram must have an appropriate global annotation for any global variable that
is an Imod or rmod of the task, package, or subprogram. Component tasks must be
considered in computing lmods and rmods.

The proof obligations related to global annotations are discussed in Section 10.

Global annotations enforce the mutual exclusion conditions that RM 9.11 imposes on
use of global variables not specially designated using pragma SHARED.

7 Delay Statements

Delay statements require only that there be a global virtual variable ¢ that increases each
time one looks at it and that any delay statement increases by at least the delay amount.
The value of ¢ is returned by the function clock.

8 Control Flow of Tasks

For a number of purposes, it is necessary to have a language for describing the location of
control in a task. In Ada, the location of the control point in a task is defined (and is only
well-defined) relative to synchronization points of the task.

Accordingly, we associate with each task an implicit virtual state variable called its location.
With one exception, the location of a task is the last synchronization point it has passed.
The location points of the task are the following.

Page 23

26 February 1994 STARS-AC-A023/003/00

1. init, its location when it is activated.
begin, the point just after the begin following its declarative part.

Each entry call A, and its return.

-~

Sets of accept statements and terminate alternatives. (These are not synchronization
points.)

The initiation of each entry call.
The end of each accept statement.
Each abort statement.

Each reference to a variable declared using pragma shared.

© © N & o

Allocation of any subtask.

10. Completion of the task.

Quasi-tasks other than tasks have the same locations point, other than init (and for non-
library packages, completion), but do not have an independent location variable. A sub-
program is passed the location variable of its caller as an implicit parameter. The location
variable of a package or block statement is the location variable of the smallest task or
subprogram that contains it. \

Duplicate accept statements or entry calls may be distinguished by labels in order to give a
more precise description of control flow, but it is not necessary to do so.

The intuitive idea of locations is that a virtual assignment
location := a;

takes place simultaneously with each synchronization or arrival at a select statement (after
evaluation of the guards of a selective wait). Some complications arise because of the multiple
nature of certain Ada synchronizations, namely task activations, task termination and entries
associated with selective waits. Let us examine these one by one.

o Selective wait statements. Consider the statement
select when bl => accept Al ...or ...or when bn => accept An ...;

(Consider an unconditional alternative to be the same as when true =>) After
the guards have been evaluated, the task T containing the statement has location

{Ai; bi = true}.

This is also the code if one of the alternatives is a terminate alternative.

Page 24

26 February 1994 STARS-AC-A023/003/00

o Selective wait with an else.

select when bl => accept Al ...or ...or
when bn => accept An ...else ...;

Here, T has location
{Ai;bi = true A 3T’ T'.location =W, W a call to entry Ai}.

If this set is empty, then the location of T is not updated. (We say “entry named by
Ai” because it may have a label or multiple accepts.)

e Selective wait with a delay. The delay alternative has the same semantics as an else.
¢ Simple entry calls. The task is at the entry call.
o Simple accept calls. The task is at the corresponding singleton set of accepts.

o Conditional and timed entry calls. One is at the call only if somebody else is at a
matching accept.

Using locations, the attributes CALLABLE, TERMINATED, and COUNT can be given straightfor-
ward semantics.

8.1 The Theory of Tasks and Locations

In order to talk about blocking and deadlock in a quasi-task, we need a language in which
we can talk about all the dependent tasks of a quasi-task and their control points.

The sorts of the theory are the sorts of

e quasi-tasks and

e locations.

A location of a task or subprogram is either a location contained in it or a location of a
subprogram that it calls.

The following predicates and relations are provided.

1. The dependency relation on quasi-tasks.

2. The “is a task” predicate.

26 February 1994 STARS-AC-A023/003/00

3. The relation “« is a location of the quasi-task T.”
quasi-tasks x tasks
is provided.

4. A location function from tasks to locations, standing for the current location of the
task.

If the body of T is visible and contains entries i, ..., 8n and calls subprograms Py,. .., Pa,
then a transform will be provided to automatically rewrite “« is a location of T” to

o€ {ﬁl, ooy Bm}U | locations(P).

1<ikn

Note that at any time, one can in theory talk about the locations of all dependent tasks of all
visible quasi-tasks, even though those dependent tasks are not visible. To actually do such
a thing is usually not necessary, and a program written in such a way that it is necessary to
do so is poorly designed.

9 Exceptions and the Abort Statement

It appears that to a large extent, exceptions can be handled as in sequential Ada. In
particular, handled exceptions can be treated as for sequential programs.

The main difference between exceptions in tasks and exceptions in other declarative regions
is that an unhandled exception in a task is not propagated, but simply causes that task to
become completed.

A task may contain a promise annotation for unhandled exceptions (they need not be dis-
tinguished since they are not propagated).

--| ON UNHANDLED EXCEPTION PROMISE theta;

The condition theta is the precondition of any unhandled exception. It must imply the
postcondition of the sequence of statements of the task containing it.

Executing an abort statement is somewhat analogous to raising an unhandled exception in
the task aborted. Aborting a task leaves that task in an “abnormal state.” The task will
become completed by the time it reaches its next synchronization point. The fact that we
do not exactly know when the aborted task will be completed is reflected in the semantics
by our not knowing the values of any global or state variables that can be modified in the
synchronization region of the given task. The semantics of the abort statement is as follows.

Page 26

26 February 1994 STARS-AC-A023/003/00

1. Each task may have an optional abort annotation. It may not mention any global
variables. It must imply the postcondition of the sequence of statements of the task.
It must hold at each synchronization point of the task.

2. The precondition of a statement abort T in a task S is the conjunction of its post-
condition and S.CI with all global OUT variables of T universally quantified.

An abort annotation may contain non-global state variables of the aborted task, because
other tasks may regard the values of these variables as unchanged since the aborted task last
reached a synchronization point.

If a task S calls an entry of a task T that is already completed or becomes completed
during the corresponding accept statement, the exception TASKING_ERROR will be raised
in S. In establishing the precondition of this exception in S, the completion condition of T
(postcondition of the sequence of statements of T) may be assumed. All of this will be a
conjunct of the precondition of the call to the entry of T.

We expect that normally there will be no abort statements and TASKING_ERROR will never
be raised by a synchronization with a completed or abnormal task. In this case, there must
be no abort or UNHANDLED EXCEPTION annotations and their conditions are considered to
be false. In this case, rather than requiring to prove as part of the precondition of each
entry call that the task being called has not terminated, we will require the proof of deadlock
freedom to show that no entry of a completed task is ever called.

In our semantics, it does not seem useful to distinguish abnormal from completed.

We remark that since an unhandled exception in a task will not be propagated, but will
cause just the task it occurs in to terminate, rather than being handled later or causing
the whole program to abort, it can lead to a program that terminates with an unexpected
result. This possibility makes the policy of ignoring certain predefined exceptions much less
comfortable than in purely sequential programs, because it can make a program return bad
results without any warning, rather than just aborting it. It would seem that the thing to
do would be to require a proof that no such exception can arise in a task without being

handled.

10 Shared Variables

Ada RM 9.11(4,5) requires that tasks observe a form of mutual exclusion in using global
variables other than those designated using pragma SHARED. That is, a program must be
written so that a non-SHARED global variable written by any task may not be read by another
task while control in the writing task is in between the same two synchronization points as
the write to the variable. A read of a global variable similarly excludes any other task from
writing it.

We propose the following notation system for enforcing this mutual exclusion.

Page 27

26 February 1994 STARS-AC:-A023/003/00

Each task, package or subprogram that uses a global variable V must have a corresponding
global annotation, just as subprograms do now.

U : IN;
V : 0UT;
W : IN OUT;

If V is an lmod (resp. rmod) of a task T, not counting component tasks, T has a virtual
variable T.V’read (resp. T.V’write). The default initial values of T.V’read and T.V’write
are both true when the variables exist. (Hence, in the case where only one task ever uses a
given global variable, no annotations need ever mention T.V’read or T.V’write.)

A virtual assignment to T.V’read or T.V’write may be made immediately after any syn-
chronization point, but nowhere else. For each pair of components T1 and T2 of T that
have tasking global annotations for V, each of the following that is applicable is an implicit
conjunct of the CI of T.

not(T1.V’read and T2.V’write)
not(T1.V’write and T2.V’read)
not(T1.V’write and T2.V’write)
T1.V’read implies T.V’read
T1.V’write implies T.V’write
T2.V’read implies T.V’read
T2.V’write implies T.V’write

T.V’read (resp. T.V’write)is a precondition of any occurrence of V as an lmod (including
in an annotation; resp. rmod).

11 Freedom from Deadlock

Given our language for talking about locations, it is easy to define what it is for a quasi-
task to be blocked. To prove freedom from deadlock, one need only show that the quasi-
task in question (probably one with no external entry calls or externally visible entries) is
never blocked. That is, one just needs to show that the statement “T is not blocked” is a
consequence of the cooperation invariant of T. (Typically, this non-blocking statement would
be a conjunct.)

Here is the definition of blocking. Note that it does not need the whole language of locations,
only the idea of being at an entry call, at a select statement (set of open alternatives) or at
or after completion (= at termination).

1. Two locations match if one is an entry call, one is an acceptance set, and the accept

Page 28

26 February 1994 STARS-AC-A023/003/00

corresponding to the call belongs to the set.

match(ly, ly) = is_entry(ly) A is_accept_set(lz) A entry_of (1) € entries(lz)

2. A quasi-task is terminable if either it has already terminated or it and all its dependents
are completed, terminated, waiting on terminate alternatives, or never initiated (for
unallocated members of the collection associated with an access for a type with task
components).

terminable(T) =
(location(T) = T.terminated) V
((location(T) = T.completedV
terminate € accepts(location(T))V
location(T') = T.init)A
VS € components(T) (terminable(S)))
A quasi-task T is terminable if it and its dependents are not preventing its master from
terminating. Besides being at a terminate alternative, it (and its dependent tasks)
may also be at some accept statements, so termination may not be the only thing it
can do.

3. A task is blocked if it is not terminable and none of the locations of itself and its
dependent tasks match.

blocked(T) =
—terminable(T)A
VS, " € dependents(T) (=(match(T.location, S.location)A
—(match(S.location, ' .location))

Note that the definition of blocking involves talk about what arbitrarily deeply nested tasks
are doing. Normally, in a well-constructed program, conditions under which T may be
blocked can be described solely in terms of locations of its visible tasks. In a proof of
deadlock freedom, the CI of each quasi-task will contain a conjunct

blocked(T) « ...

or

blocked(T) — ...

characterizing or giving a necessary condition for blocking in terms of locations of itself and
of components visible outside it.

To prove deadlock freedom of the producer-buffer-consumer package, PBC, we just need to
make the following observations.

BUFFER.write)

blocked (PRODUCER) (PRODUCER. location

BUFFER.read)

"

blocked (CONSUMER) (CONSUMER.location

Page 29

26 February 1994 STARS-AC-A023/003/00

blocked (BUFFER) = (BUFFER.write in BUFFER.location or
BUFFER.read in BUFFER.location)

Deadlock freedom, not blocked(PBC), follows immediately from these. The actual proof
would be just to write this as the cooperation invariant of PBC. No other annotations are
needed for the proof of deadlock freedom. (The loop invariants can be taken to be just true.)

12 Task Formal Parameters

Because tasks are syntactically objects in Ada, they may be passed as parameters to sub-
programs, though only as IN parameters. Even though a task is an IN parameter, however,
its state can change during the call because of rendezvous it may have with other tasks both
inside and outside the subprogram.

A subprogram with a task parameter is, while it is executing, very much like a package whose
declaration contains a task body declaration. The main difference is that the task need not
be in its initial state when the subprogram is called, but that is not a major change.

IN, OUT, and RETURN annotations of subprograms with task parameters (or parameters with
task components) will naturally be stated in terms of the locations and state variables of the
parameter tasks and their dependent tasks. In addition, the subprogram will, like a package,
have a CI constraint. When the subprogram is called, the CI of the calling quasi-task must
satisfy the subprogram’s CI constraint, modulo parameter substitutions.

Global variables, deadlock, and liveness considerations are likewise analogous to those for
packages that contain externally visible tasks.

On the whole, the situation here is simpler than for generic procedure subprogram parame-
ters, because fixing the type of a task fixes just what its body is, including any use of global
variables, not just the types of the parameters to its entries.

13 Verification without Cooperation Invariants

The use of location variables supports a verification methodology that can avoid or minimize
use of virtual variables and explicit cooperation invariants. In this section we will present a
brief sketch of this methodology, which is based on that of [14] and is similar to [1].

The rules for this methodology are as follows.

1. Annotations in a given task may mention state variables of any visible quasi-task.

2. The changes that each task makes in its own state variables must not invalidate any
assertions that other tasks make about them.

Page 30

26 February 1994 STARS-AC-A023/003,/00

According to our model of concurrent Ada computation in Section 15.1, at any time, just one
task will be running, and the rest will all be waiting at synchronization points. Consequently,
to be consistent with the model, each task need only preserve validity of the preconditions of
synchronization points of other tasks. These conditions are the PRE and POST conditions of
entries and tasks, IN and OUT conditions of entries, pre- and post- conditions of the sequence
of statements of quasi-tasks (only the precondition for non-library packages).

Each such condition requires an invariance check. The simplest way to do that with the
machinery we all ready have is to implicitly add the following conjunct to the CI for each
such condition that mentions state variables of tasks other than the one to which it belongs.

T.location =L -> P

Here L is a synchronization point of T, and P is the precondition of that synchronization
point.

Of course, we can achieve the same logical effect by simply adding these conjuncts to the CI
ourselves. The advantage of putting them in the code instead of the CI is to make obvious
the relation of the assertions to the code that establishes them. It also reduces the need to
explicitly mention locations in annotations.

As an example, the following is PBC annotated in the fashion described here. We use
circle(POOL,I,J) to denote the list of elements of POOL as a circular queue, starting at I
and going to J-1, around the corner if J < 1.

task BUFFER is
--| POST: A[1..P.I] = B[1..C.J] ++
- circle(POOL,0UT_INDEX,IN_INDEX);

entry READ (C : out CHARACTER);

-=| IN A[1 .. P.I] = B[1 .. C.J] ++

--1 circle(PODL,OUT_iNDEX,OUT_INDEX) ++ [C];

--| OUT no change of variables;

--] oUT Al1 .. P.I] = B[1 .. C.J] ++ :

- circle(POOL,0UT_INDEX, (IN_INDEX+1 mod POOL.len);
entry WRITE(C : in CHARACTER);

--] IN A1 .. P.I] = B[1 .. C.J] ++

- circle(POOL,OUT_INDEX,QUT_INDEX) ++ [C];

--| OUT no change of variables;

--] OUT A[1 .. P.I] = B[1 .. C.J+1] ++

- circle(POOL, (OUT_INDEX+1i mod POOL.len),IN_INDEX);

end;

task body BUFFER is

26 February 1994 ’ STARS-AC-A023/003/00

POOL_SIZE : constant INTEGER := 1;

POOL : array(1 .. POOL_SIZE) of CHARACTER;

COUNT : INTEGER range O .. POOL_SIZE := 0;

IN_INDEX, OUT_INDEX : INTEGER range 1 .. POOL_SIZE := 1;
begin

-=| P2

loop

--) invariant A[1..P.I] = B[1..C.J] ++
--| circle(POOL,QUT_INDEX, IN_INDEX);
select
when COUNT < POOL_SIZE =>
accept WRITE(C : in CHARACTER) do
POOL(IN_INDEX) := C;

end;
IN_INDEX := IN_INDEX mod POOL_SIZE + 1;
COUNT = COUNT + 1;

or
when COUNT > 0 =>
accept READ(C : out CHARACTER) do
C := POOL(OUT_INDEX);

end;
OUT_INDEX := OUT_INDEX mod POOL_SIZE + 1;
COUNT = COUNT - 1;
or
terminate;
end select;
end loop;
end BUFFER;

14 Control vs. Data in Verification of Concurrent Programs

Intuitively, what a concurrent program does can be divided into two parts: how its control
points (locations) move around as the program is executed, and how the values of the program
variables (data) change.

The proof of data correctness corresponds roughly to partial correctness, the proof that
embedded assertions about the values of data variables hold whenever they are encountered.
The most important parts of the control flow verification are deadlock freedom (the proof
that it is always possible for some task to be running) and progress properties (the proof
that certain control points will eventually be reached). If the program actually terminates,
partial correctness, deadlock freedom, and progress constitute a proof of total correctness.

The distinction between control and data verification is not a hard and fast one. Deadlock
freedom, for example, is also proved using partial correctness methods, but the assertions

Page 32

26 February 1994 STARS-AC-A023/003/00

used talk mainly about the location of control points and only incidentally about values of
data variables. Even the use of control locations could be paraphrased, though with some loss
of clarity. Nevertheless the distinction between control and data is a useful and important
one.

For example, the verification of the systolic matrix multiplication algorithm also divides
neatly along the control-data line. The partial correctness proof shows that, as long as the
system of entry calls can be made, the product of the two input matrices will be computed.
That proof refers only to the data variables. The proof of deadlock freedom refers only to
control variables, and not to the data variables. The liveness (termination) proof is trivial.

In general, the distinction between control flow and data manipulation is useful for the
following reasons. First, the effect on data can probably be defined as a fairly classical kind
of mathematical function or relation, whereas control flow analysis tends to be a less classical,
more combinatorial problem. Second, the effect of a program on data is more tolerant of
underspecification. Except in a very robust program, if control flow is underspecified, it will
turn out to be impossible to prove either deadlock freedom or progress properties.

This distinction between data-oriented and control-oriented aspects of verification corre-
sponds to the distinction between control path and data path in hardware design and ver-
ification. We consider the ease with which our method supports separate specification and
verification of control and data to be one of its strong points.

15 Proving General Properties of Quasi-Tasks

Tt is often desirable to verify some properties of a system that cannot be expressed directly
by Larch/Ada annotations. For example, in a message passing system, we would like to say
that every message received will eventually be passed on.

A common language for expressing such properties is temporal logic. It extends first order
logic by adding an operator unless:

¢ unless 1 = ¢ will be true from this moment until 1) becomes true (if it ever does).
From this operator can be derived two other operators, O “from now on,” and © “eventually.”
O¢ = ¢ unless false

Od = -~0-¢

We can express our message passing property as follows.

OVYm (receive(m) — Oresend(m))

In this section, we will outline what it means for a statement of temporal logic to be true of
a quasi-task, and how one would go about proving such statements.

Page 33

26 February 1994 STARS-AC-A023/003/00

15.1 A State Machine Model for Ada Tasking

Before we say how to prove temporal properties of Ada tasking programs, we should first
say what they mean. That is, we will associate with an Ada quasi-task a model for temporal
logic, and say that a temporal logic formula is true of the quasi-task iff it is true in the
associated model.

A natural, and the most commonly used, model for temporal logic is the state machine. For
our present purposes, a state machine is given by a collection of state variables, taking values
in suitable sorts, and a transition relation, R(s,s’) relating the current state (assignment of
values to state variables) s to states s’ that are accessible from it. A run of a state machine
is a finite or infinite sequence so, s1, ... of states such that for each ¢ > 0, R(s;, si41).

If s is a state, we say that a formula ¢ of first order logic is true in s, s = ¢, iff ¢ is true
(in the many-sorted model for the sorts of the state variables) when the state variables are
replaced by their s-values. We define as follows the property of a temporal logic formula
being satisfied by a run. If ¢ is a first order formula, then

50,81,--- FF ¢ < s0 | ¢.

If ¢ and % are temporal logic formulas, then

80,81, - - - = ¢ unless

iff

50,81,--- F ¥
or

50,81,---F ¢
and

S1,82,--. = ¢ unless .

Satisfaction is defined for quantifiers and connectives in the following way.
A state machine satisfies a temporal logic formula ¢ iff every run satisfies the formula.

With an Ada quasi-task T, we associate the following state machine.

o Its state variables are all variables visible from inside the quasi-task and the location
variables of the quasi-task and its dependent tasks.

e The transition relation relates pairs of states s and s’ such that

1. except for exactly one location variable, s and s’ give the same values of location
variables; and '

2. a program state in which the program state variables have the values given by s’
can be reached from one in which they have the values given by s by executing
only steps of the task S, whose location changes from that of s to that of s, in
such a way that no control point of S is passed along the way.

Page 34

26 February 1994 STARS-AC-A023/003/00

In terms of the actual Ada program, it means that for the purpose of temporal modeling,
the location of a task is the last control point it passed, and the values of its variables are
the values they had when it passed that point.

According to this point of view, we do not take account of any changes of program variables
between control points. For example,

TEO(x=0)

may be true even though x is temporarily set to 1 between control points. This point of
view seems appropriate because such temporary changes have no effect on the externally
observable behavior of the program.

This state machine model is equivalent to a process logic model in which each synchronization
event has attached to it the location and values of the state variables of all the tasks involved.

We plan eventually to prove that the methodology for verifying concurrent Ada programs
given in this paper is sound relative to this state machine model.

15.2 Verifying Temporal Assertions’

We do not propose that Penelope annotations be written in temporal logic. Rather, we
propose to write
TE¢ ()

to indicate that a quasi-task T satisfies a temporal logic formula ¢. We will outline rules for
deriving such a temporal logic assertion about T from a partial correctness verification of T
and temporal assertions about the components of T. Furthermore we will give special rules
for deriving assertions of the form (5) only when @ is of one of the following special forms:
simple safety assertions

P — 0b

and progress assertions

¥ A\ Ti.location = a; — O \/ A\ Ti.location = B,
i BEB i

where Ti range over tasks whose locations are visible from T, and «; and B; are locations
of Ti. The thesis is that the temporal assertions that are useful in the actual development
of programs are of these kinds and that all other interesting temporal assertions about a
program can be derived from temporal assertions of these kinds, possibly with the assistance
of history variables. We do not know whether there is a theorem to back up this thesis.

IThe approach taken in this section derives from a consultation with F. Schneider.

26 February 1994 STARS-AC-A023/003/00

15.2.1 Simple Safety Properties

These properties are easy to express and prove.
Tk¢— 0y (6)
follows if ¢ implies T.PRE and T.CI implies 9.

15.2.2 Progress Properties

First consider a quasi-task T that has no dependent tasks and that calls no subprograms
(it may call entries of or accept calls from any task or subprogram). Proving that T will
eventually reach a location in a given set, provided all entry calls satisfy their preconditions
and terminate, is similar to proving termination in sequential programs: Annotate each loop
in T that decreases with each execution of the loop, and can only increase either outside
the loop or else when a location in the given set is reached. We can use this idea to prove
reachability without passing through certain rendezvous by giving those rendezvous a false
as a precondition.

Suppose we have proved that T satisfies a progress property such as
T ¢ — OT.location € A. (7)

If we want to show that
S ¢ — OT.location € A

where S is a quasi-task that has T as a component satisfies, then we must show that

1. other components of S leave ¢ invariant;
2. S does not deadlock; and

3. from any configuration of locations, S will reach a configuration in which each depen-
dent task is blocked or waiting for a rendezvous with T. This statement can be proved
by induction on the number of components of S, giving rendezvous with T a precon-
dition of false. (This condition can be weakened, but some form of it is necessary
because Ada does not require weakly fair scheduling.)

Applying this method inductively, we can prove arbitrary progress assertions. We can also
prove more general liveness assertions of the form

Tk ¢ — O((T.location € A) A1),
because this follows from the pure progress assertion (7) and the simple safety property

Tk ¢ — O((T.location € A) — ¥).

As an example, again consider the PBC package.

Page 36

26 February 1994 | STARS-AC-A023/003/00

task body PRODUCER is
I: INTEGER := 1;
begin '
while I <= A’length loop
--| invariant true;
--| termination A’length - I;
buffer.write(A(I));
I =1+ 1;
end loop;
end PRODUCER;

task body CONSUMER;
J: INTEGER := 1;
begin
while J <= B’length loop
--| invariant true;
--| termination B’length - J;
buffer.read(A(J));
J =7+ 1;
end loop;
end CONSUMER;

task body BUFFER is

POOL_SIZE : constant INTEGER := ?; -- any constant > O;

POOL : array(l .. POOL_SIZE) of CHARACTER;

COUNT : INTEGER range O .. POOL_SIZE := O;

IN_INDEX, OUT_INDEX : INTEGER range 1 .. POOL_SIZE := 1;
begin

loop

--| invariant true;
select
when COUNT < POOL_SIZE =>
accept WRITE(C : in CHARACTER)

do
POOL(IN_INDEX) := C;
end;
IN_INDEX := IN_INDEX mod POOL_SIZE + 1;
COUNT = COUNT + 1;

or
when COUNT > 0 =>
accept READ(C : out CHARACTER)
do
C := POOL(OUT_INDEX);
end;
QUT_INDEX := OUT_INDEX mod POOL_SIZE + 1;

Page 37

26 February 1994 STARS-AC-A023/003/00

COUNT := COUNT - 1;
or
terminate;
end select;
end loop;
end BUFFER;

Liveness properties for the buffer are the most interesting. Because

0 <= COUNT <= POOL_SIZE,

we can use COUNT and POOL_SIZE - COUNT as counters to show that either a READ, a WRITE
or termination will eventually take place, assuming cooperation by the environment. It
is the possible to show that in any environment that permits BUFFER to run occasionally,
everything BUFFER reads will eventually be written, and BUFFER will always eventually read
another character, unless it terminates first.

Now, we can also show that each of PRODUCER and CONSUMER eventually reaches completion
provided they do not permanently block. On the other hand, if no environment task (i.e., any
task other than PRODUCER or CONSUMER) ever calls the entries of BUFFER, the latter will always
eventually block waiting for such a call or for the completion of PRODUCER and CONSUMER.
Taken as a whole, PBC does not deadlock, hence in it each of PRODUCER and CONSUMER
eventually completes. At that point BUFFER cannot receive any more read or write calls, so
its progress property implies that it must complete. Hence the quasi-task PBC completes.

15.3 An Overall Development Method for Concurrent Programs

We would envisage developing a verified concurrent program in the following way.

1. Start with a system specification in terms of temporal logic.

2. Use a design development/verification system to develop a system design giving a
structure in terms of the main quasi-tasks, control points, invariants, and progress
conditions that suffice to imply the overall specification.

3. Use Penelope to implement this design in code and verify that implementation.

26 February 1994 STARS-AC-A023/003/00

16 Bibliography

[1] K. R. Apt, N. Francez, and W. P. de Roever. A proof system for communicating
sequential processes. ACM TOPLAS, 2(3):359-385, 1980.

[2] L. K. Dillon. An isolation approach to symbolic execution-based verification of Ada
tasking programs. Journal of Systems and Software.

[3] R. Gerth and W. P. de Roever. A proof system for concurrent Ada programs. In
Science of Computer Programming 4, pages 159-204, Amsterdam, 1984. Elsevier Science
Publishers B. V. (North Holland).

[4] Matthew Hennessy. Proving systolic systems correct. ACM TOPLAS, 8(3):344-387,
1986.

[5] C. A. R. Hoare. Communicating Sequential Processes. Series in Computer Science.
Prentice-Hall International, Englewood Cliffs, NJ, 1985.

(6] C.B. Jones. Specification and design of (parallel) programs. In R. E. A. Mason, editor,
IFIP 83, pages 321-332, Amsterdam, 1983. North Holland.

[7] C. B. Jones. Tentative steps toward a development method for interfering programs.

ACM TOPLAS, 5(4):596-619, 1983.

[8] L. Lamport. The temporal logic of actions. Technical report, DEC SRC, 130 Lytton
Avenue, Palo Alto CA 94301, December 1991.

[9] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, New York, 1980.

[10] S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic ap-
proach. Communications of ACM, 19(5):279-284, 1976.

[11] W. Polak. Predicate transformer semantics for Ada, release 1.6. Technical report, ORA,
October 1992. ORA internal report.

[12] W. Polak. Semantics and verification of Ada tasking programs. Technical report, ORA,
April 1993. ORA internal report.

[13] W. Polak. Verification examples of tasking programs. Technical report, ORA, February
1993. ORA internal report.

[14] R. D. Schlichting and F. B. Schneider. Using message passing for distributed program-
ming: Proof rules and disciplines. ACM TOPLAS, 6(3):402-431, 1984.

26 February 1994 STARS-AC-A023/003,/00

A Semantics of Ada Tasking Primitives

Task termination

wp(terminate) = CI A (/\ POST; — POST)

where POST is the POST condition of the given task, and POST; are the POST conditions of
its child quasi-tasks.

Entry call

wp(T.enter(...))¢ =
CIAGA
V...(INCIAINO, N8, — ¢ ANCI)

where 8! and 0 are the in and out conditions of the entry declaration and 6, is its PRE
condition, with the appropriate substitutions for formal parameters.

Accept statement

wp(accept enter(...) do S end enter;)¢=V... (pre — Wp(S)(éo — ¢))

where the ellipsis points represent the formals.
Delay statement
wp(delay E;)¢(time) = Vs > time+ E ¢(s)

Selective wait

wp(select S1 or ...or Sn;)¢ = wp(S1)¢ A... A wp(Sn)¢

wp(select S1 or ...or Sn else S;)¢ = wp(S1)¢A ... A wp(Sn)¢ A wp(S)¢

Select alternative

wp(when b => S)d =b — wp(S)¢

Page 40

26 February 1994 STARS-AC-A023/003/00

Conditional entry call and timed entry call

Like selective wait with else.

Priorities

Adjoin to the precondition of any statement in a task a condition guaranteeing that all
tasks of higher priority are blocked. These conditions would be similar to conditions in
deadlock annotations, but they must guarantee that tasks are blocked rather than that they
are unblocked. This extra part of the precondition need only be adjoined at synchronization
points.

Task and entry attributes

T’CALLABLE and T’TERMINATED probably require annotations in the task giving conditions
that must hold for the task to be callable, terminated or abnormal. Then, say if T’ CALLABLE
is true then the callable condition must hold, and if it is false, then either the terminated or
abnormal condition must hold.

E’COUNT can be modeled using the waiting-on-an-entry-call conditions used in deadlock anal-
ysis. If E?COUNT is n, then the wait conditions for entry E must be true for n processes.

Abort statement

As currently envisaged abort will just set a global flag that the relevant task has been
completed. The cooperation invariant must be checked.

wp(abort T)¢ = (CI A @)[T'completed <= true]

26 February 1994 STARS-AC-A023/003/00

B Concurrent Sieve of Eratosthenes

Given the set S of integers from 2 to N, represented by a bitstring, we let a collection of
tasks

sieve(i), 1 <= i <= sqrt(N),

(where sqrt (N) is the integer part of the square root of V) each delete all proper multiples
of 7 from the set S. In the end, S is the set of primes not greater than V.

The following is intended to be a continuous piece of code—the comment in the middle about
CI constraints is not meant to be a real break. The order of the code is not important except
that the declarations must precede the CI.

N: integer;
type Set is array(2..N) of Boolean;
S : Set := (others => true);

package Sieve_Pak is

--| global S in out true;

--| PRE: S = 2..N;

--| POST: S = {n in 2..N | n prime};
end Sieve_Pak;

package body Sieve_Pak is

task S_handler
--| global S in out true;
is
entry delete(n: in integer --: virtual param remd;
)
--1 0UT s = IN S -- {n};
--| OUT remd = IN remd ++ {n};
end S_handler;

task type sieve_type

--| STATE n:Int, init: Bool, removed: Int -> Bool;

--| POST forall k >1 :: k¥n <= N -> removed(nxk) ;

--| CI constraint:

--| forall k >1 :: k¥n <= N <->

- (CI -> CI[S <= S --{k*n}, removed <= removed ++ {k*n}])
is

entry get_n(m: integer);

Page 42

26 February 1994 STARS-AC-A023/003/00

--] OUT n = m and init;
end sieve_type;

An individual sieve task needs to know only that the CI is preserved by removing a multiple
of its number n from S.

type sieve_array is array(2..sqrt(N)) of sieve_type;
sieve : sieve_array;

--| CI: forall k in 2..sqrt(N) :: (sieve(k).init -> sieve(k).n = k);
--| CI: forall k in 2..N ::
--1 (S[kx] = forall n in 2..sqrt(N):: not removed(n)[k]l);

task body sieve_type is
n: integer;
begin
accept get_n(n) do n := n; --: init := true;
end get_n;
for k in 2..N/n loop
--| invariant forall k’ in 2..(k-1) :: not S(nxk)
S_handler.delete(k*n --: virtual arg removed;
);
end loop;
end sieve_type;

task body S_handler is

begin
loop
select
accept delete(n --: virtual arg remd
)
do S[n]:= false; --: remd[n] := true;
end;
or
terminate
end select;
end loop;

end S_handler;

begin -- Sieve_Pak
for m in 2..sqrt(N) loop
sieve(m) .get_name(m);
end loop;

26 February 1994 STARS-AC-A023/003/00

end Sieve_Pak;

C Systolic Matrix Multiplication

We present an example verification of a systolic matrix multiplication algorithm. This al-
gorithm is modified from that given in [13, 12] (derived from [4]) so that it can support
multiplication of a continuous stream of pairs of matrices. As it is here, we have only an-
notated it for one multiplication—we plan to upgrade later. For now, we hope that the
annotations make it clear that the effect of this system of tasks really is to multiply two
matrices. The process logic annotations do nothing of the kind; in fact, they tell the reader
no more than the code itself does.

This system finds the product ¢ = a * b where a is an m X n matrix and b is an n X p matrix.
The main work is done by an m x n x p array of cells mtx(¢,7,k). Each cell mtx(z, 7, k),
2,7,k # 1, does the following.

o Fetch the value a;; from x(z,7,k — 1).
o Fetch the value b;; from mtx(: — 1, 7, k).

e Fetch the partial sum for c; k,
i1
Z aij/bj,k
j'=

from mtx (i,j — 1,k) and add to it the product a;;bjk.

If k=1 (resp. ¢ = 1), then mtx(s, j, k) receives a;; (resp. bjx) from a separate input task. If
j =1, then the initial partial sum is just 0. Figure 1 illustrates the function of a cell.

We will first present a slightly simplified version of the system that just multiplies one pair of
input matrices and returns the result. This example shows just how simple it is to annotate
the system in a way that shows that in fact it does multiply two matrices. In the following
subsection, we will make small changes to the program, but considerable additions to the
annotations, so that the new program is shown to multiply pairs of matrices in two input
streams, with later inputs allowed to start before earlier outputs have been produced.

m: constant integer = ...;
n: constant integer e
p: constant integer cees

1}

type ma is array(l..m,1..n) of integer;
type mb is array(1l..n,1..p) of integer;

Page 44

26 February 1994

A(i,j5)
to mtx(]i,j ,k+1)
(if k < p)

STARS-AC-A023/003/00

=0 A(4,57) * B(J', k)
tomtx(i,j+1,k)
or multiply-output

B(j,k)
from mtx(i-1,j,k)
or multiply_ input

mtx(i,j,k)

it AG,3') * B(5', k)
from mtx(i,j-1,k) AL,)
or 0 from mtx(i,j,k-1)
or multiply_input

Figure 1: A Cell

B(j,k)
to mtx(i+1,j,k)
(if 1 < m)

B ——

26 February 1994 STARS-AC-A023/003/00

type mc is array(l..m,1..p) of integer;

package matrix is

task multiply_input
--| STATE: A:ma, B:mb;
is
entry A_in(x: in ma);
--| OUT A = x;
entry B_in(y: in mb);
--| OUT B = y;
end multiply_input;

task multiply_result is
entry result(z: out mc);
--| OUT z = A*B;

end multiply_result;

Here is the package body. It starts with the declarations of the cell tasks that do all the
work. Then we can give the CI.

We define)
J
partial_mult(A, B, i,j, k) = Z A,',jl * Bj',k

i'=1

package body matrix is
A: ma; B:mb;

task type cell is
~-| STATE: a, b, ¢, ii, jj, kk : Int;

entry place(x,y,z:in integer);
--| OUT (ii,jj,.kk) = (x,y,2);
entry a_in(x: in integer);
—-| IN x = A(ii,jjl;
entry b_in(y: in integer);
--] IN y = B[jj,kk];
entry c_in(z: in integer)
--| IN z = partial_mult(A,B,ii,jj,kk);

Page 46

26 February 1994 STARS-AC-A023/003/00

end cell;
type multiplier is array(l..m,1..n,1..p) of cell;

mtx: multiplier;
--| CI: forall i in 1..m, j in 1..n, k in 1..p ::
mtx(i,j,k).after(place) -> mtx.(ii,jj.kk) = (i,j,k);

task body multiply_input is separate;
task body distribute_input is separate;
task body multiply_result is separate;
task body cell is separate;

begin
for i in 1..m loop for j in 1..n loop for k in 1..p loop
mtx(i,j,k).place(i,j,k);
end loop;
--| forall (i,j,k) in (1..m,1..n,1..p) :: mtx(i,j,k).(i1,jj,kk) = (i,j,k);
end matrix;

.

Next we present the bodies of the components.

task body multiply_input

is
A: ma; B: mb;
begin
select
accept A_in(x) do A := x; end A_in;
or
terminate;
end select;
accept B_in(y) do B := y; end B_in;
for i in 1..m loop for j in 1..n loop
mtx(i,j,1).a_in(A(i,3));
end loop; end loop;
for j in 1..n loop for k in 1..p loop
b_in(B(j,k));
end loop; end loop;
end multiply_input;

Note that in multiply_input, no annotations are really needed for partial correctness. The

Page 47

.26 February 1994 STARS-AC-A023/003/00

important thing to know is just that all the rendezvous in it do take place, which is deadlock
freedom and progress.

The task multiply_result gets the product from the array of cells mtx(i,n,k),1 <= i <=
m, 1 <= k <= p and makes it available for an external call to fetch.

task body multiply_result is
C: mc;
begin

for i in 1 .. m loop for k in 1 .. p loop
--| invariant forall i’,j’::
(1,1) lex (i’,k’) lex (i,k-1) -> C(i’,k’) = (A*B)(i’,k’);
mtx(i, n, k).sum(C(i,k));
end loop; end loop;
accept result(z) do z := C; end result;
end multiply_result;

Next we presnt the cells.

task body cell is
aa, bb, cc : integer;
ii, jj, kk : integer;
have_a, have_b : boolean;

begin ‘ :
accept place (x, y, z : integer)
do
ii :=x; jj = y; kk := z;
--| initialized := true;
end;
select
accept a_in(x) do aa := x end;
or :
terminate;
end select;
accept b_in(x) do bb := x end;
if kk < p then mtx(ii,jj,kk+1).a_in(aa);
if ii < m then mtx(ii+1,jj,kk).b_in(bb);
if jj > 0 then mtx.(ii,jj-1,kk).c_out(cc) else cc := 0;
cc := cc + aaxbb;
accept c_out(z) do z := cc; end c_out;
end cell;

Page 48

26 February 1994 STARS-AC-A023/003/00

The very simplicity of the partial correctness proof shows that proving deadlock freedom
and progress is relatively much more important for understanding tasking programs than
termination is for sequential programs. In particular, in a complex system like this ma-
trix multiplication package, a proof of freedom from deadlock seems essential to produce a
conviction that it really does work.

The following is a sketch of a proof deadlock freedom, namely that the matrix multiplication
system is not blocked unless multiply input is waiting for input or multiply_output is
waiting for its output to be accepted.

Order locations of cell by <: a < 8 iff o precedes (3 in the code. Verify matrix with the
following cooperation invariant.

(ij,k)e(l m,l.n,1..k)

1 <1 < m A location(mtz(,j, k)) < a-in « location(mitz(z — 1 ,7,k)) < a_outA
1 < j < n A location(mitz(i, j, k)) < b_in « location(mtz(¢,5 — 1,k)) < b_outA
1 < j < pA location(miz (3,5, k)) < c_in & location(miz(i ,],k)) < c_out

Now once mtx(i,j,k) is initialized, it can be blocked only if it is waiting at one of a_in,
b_in, c_in (only if £ > 1), a_out (only if ¢ < m), b_out (only if j < n), c.in. One can prove
by induction on k that if mtx(i,j,k) is blocked at anything but c_out, then for some ¢’ <7,
3" <4, and k¥ < k, either mtx(i’,j’,1) is blocked at a-in or mtx(1,j’,k’) is blocked at
b_in. These conditions are possible only if multiply_input is blocked at input. Otherwise,
all tasks mtx (i, j,p) must be blocked at c_out. That can happen only if multiply result
is blocked at result.

For m, n, and p fixed finite numbers, finite state analysis (i.e., model checking) would be able
to prove deadlock freedom, but not with m, n, and p unspecified positive integers.

